Electric Icarus: NASA Designs a One-Man Stealth Plane: Scientific American

A super-quiet, hover-capable aircraft design, NASA’s experimental one-man Puffin could show just how much electric propulsion can transform our ideas of flight. It looks like nothing less than a flying suit or a jet pack with a cockpit.

On the ground, the Puffin is designed to stand on its tail, which splits into four legs to help serve as landing gear. As a pilot prepares to take off, flaps on the wings would tilt to deflect air from the 2.3-meter-wide propeller rotors upward, keeping the plane on the ground until it was ready to fly and preventing errant gusts from tipping it over. The Puffin would rise, hover and then lean over to fly horizontally, with the pilot lying prone as if in a glider. When landing, the extending spring legs would support the 3.7-meter-long, 4.1-meter-wingspan craft, which is designed with carbon-fiber composites to weigh in at 135 kilograms, not including 45 kilograms of rechargeable lithium phosphate batteries.

In principle, the Puffin can cruise at 240 kilometers per hour and dash at more than 480 kph. It has no flight ceiling—it is not air-breathing like gas engines are, and thus is not limited by thin air—so it could go up to about 9,150 meters before its energy runs low enough to drive it to descend. With current state-of-the-art batteries, it has a range of just 80 kilometers if cruising, “but many researchers are proposing a tripling of current battery energy densities in the next five to seven years, so we could see a range of 240 to 320 kilometers by 2017,” says researcher Mark Moore, an aerospace engineer at NASA’s Langley Research Center in Hampton, Va. He and his colleagues will officially unveil the Puffin design on January 20 at an American Helicopter Society meeting in San Francisco.

via Electric Icarus: NASA Designs a One-Man Stealth Plane: Scientific American.

The Recent Future / January 21, 2010 / SciFi, Tech / 0 Comments

Green Sea Slug Is Part Animal, Part Plant

Green Sea SlugIt’s easy being green for a sea slug that has stolen enough genes to become the first animal shown to make chlorophyll like a plant.

Shaped like a leaf itself, the slug Elysia chlorotica already has a reputation for kidnapping the photosynthesizing organelles and some genes from algae. Now it turns out that the slug has acquired enough stolen goods to make an entire plant chemical-making pathway work inside an animal body, says Sidney K. Pierce of the University of South Florida in Tampa.

The slugs can manufacture the most common form of chlorophyll, the green pigment in plants that captures energy from sunlight, Pierce reported January 7 at the annual meeting of the Society for Integrative and Comparative Biology. Pierce used a radioactive tracer to show that the slugs were making the pigment, called chlorophyll a, themselves and not simply relying on chlorophyll reserves stolen from the algae the slugs dine on.

“This could be a fusion of a plant and an animal — that’s just cool,” said invertebrate zoologist John Zardus of The Citadel in Charleston, S.C.

Microbes swap genes readily, but Zardus said he couldn’t think of another natural example of genes flowing between multicellular kingdoms.

Pierce emphasized that this green slug goes far beyond animals such as corals that host live-in microbes that share the bounties of their photosynthesis. Most of those hosts tuck in the partner cells whole in crevices or pockets among host cells. Pierce’s slug, however, takes just parts of cells, the little green photosynthetic organelles called chloroplasts, from the algae it eats. The slug’s highly branched gut network engulfs these stolen bits and holds them inside slug cells.

Some related slugs also engulf chloroplasts but E. chlorotica alone preserves the organelles in working order for a whole slug lifetime of nearly a year. The slug readily sucks the innards out of algal filaments whenever they’re available, but in good light, multiple meals aren’t essential. Scientists have shown that once a young slug has slurped its first chloroplast meal from one of its few favored species of Vaucheria algae, the slug does not have to eat again for the rest of its life. All it has to do is sunbathe.

But the chloroplasts need a continuous supply of chlorophyll and other compounds that get used up during photosynthesis. Back in their native algal cells, chloroplasts depended on algal cell nuclei for the fresh supplies. To function so long in exile, “chloroplasts might have taken a go-cup with them when they left the algae,” Pierce said.

There have been previous hints, however, that the chloroplasts in the slug don’t run on stored-up supplies alone. Starting in 2007, Pierce and his colleagues, as well as another team, found several photosynthesis-related genes in the slugs apparently lifted directly from the algae. Even unhatched sea slugs, which have never encountered algae, carry “algal” photosynthetic genes.

via Green Sea Slug Is Part Animal, Part Plant | Wired Science | Wired.com.

The Recent Future / January 11, 2010 / Nature, SciFi / 0 Comments